-
关于我们
人工智能算法存在固有缺陷
当前,以深度学习为代表的人工智能技术在产业界广泛应用,取得了一系列突破,但其在可解释性、鲁棒性、偏见歧视等方面尚存在局限。
1)可解释性不足
深度学习算法的一个的显著特点是训练过程中自动提取特征,通常比人工挑选的特征效果更好,但这一过程目前尚不可控,在不恰当的数据集上算法可能选择错误的特征。当待识别图像出现相似的背景时,会出现错误识别的情况。可解释性不足让人们不能理解算法的决策机理,同时也难以预测算法的行为。
2)鲁棒性不足
深度学习算法在训练过程中会对数据的鲁棒特征和非鲁棒特征进行学习,并依据这些特征进行识别。而非鲁棒特征为模型能够理解的用于对训练数据进行拟合的特征。非鲁棒特征给模型的安全性带来了极大的挑战。通常的,可以在输入数据中加入人无法感知到的轻微扰动,激活模型的非鲁棒特征,从而导致模型给出错误的结论。人工智能算法具有脆弱的一面,可能因为外部的恶意攻击行为,或者无恶意的非平常情况而失灵。
3)偏见与歧视
深度学习算法会挖掘训练数据集中不同因素的相关性,拟合数据分布特性,训练数据集本身的偏见与歧视,会被引入到训练出的模型之中。当模型应用于业务,尤其是用于自动化决策时,可能会暴露出偏见与歧视。当前在自然语言处理等领域,算法的开发普遍采用基础模型加精调的模式,基础模型本身存在的偏见与歧视还会传递到多个下游模型里,影响范围持续扩大。
以上就是南京远程IO厂家德克威尔为您带来的精彩内容,更多详情欢迎前往南京德克威尔官网!
3D 数据库